首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   35篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   7篇
  2018年   13篇
  2017年   4篇
  2016年   16篇
  2015年   22篇
  2014年   23篇
  2013年   34篇
  2012年   43篇
  2011年   29篇
  2010年   13篇
  2009年   20篇
  2008年   27篇
  2007年   44篇
  2006年   43篇
  2005年   43篇
  2004年   38篇
  2003年   34篇
  2002年   29篇
  2001年   2篇
  2000年   5篇
  1999年   7篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   3篇
  1989年   4篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有577条查询结果,搜索用时 15 毫秒
71.
Peptide arrays in which peptides were immobilized on cellulose membranes through photolinkers were synthesized. The peptides were subsequently detached from the arrays by ultraviolet (UV) photolysis for 3 h, and were used to search for functional peptides that inhibit the activity of α-amylase derived from human pancreatic juice. Amino acid replacement with high-molecular-size amino acids, Arg (R), Phe (F), Trp (W), or Tyr (Y), for the first and seventh residues of amylase inhibitor peptide, GHWYYRCW, as previous reported, led to enhancement of the inhibitory effect of the peptide on α-amylase. In particular, one of the resulting peptides, RHWYYRYW, showed a stronger inhibitory effect than acarbose (which is used as a hypoglycemic agent) or inhibitor peptide GHWYYRCW.  相似文献   
72.
While canonical 3'end modifications of mRNAs or tRNAs are well established, recent technological advances in RNA analysis have given us a glimpse of how widespread other types of distinctive 3'end modifications appear to be. Next to alternative nuclear or cytoplasmic polyadenylation mechanisms, evidence accumulated for a variety of 3'end mono-nucleotide and oligo-nucleotide additions of primarily adenosines or uracils on a variety of RNA species. Enzymes responsible for such non-templated additions are non-canonical RNA nucleotidyltransferases, which possess surprising flexibility in RNA substrate selection and enzymatic activity. We will highlight recent findings supporting the view that RNA nucleotidyltransferase activity, RNA target selection and sub-compartimentalization are spatially, temporally and physiologically regulated by dedicated co-factors. Along with the diversification of non-coding RNA classes, the evolutionary conservation of these multifaceted RNA modifiers underscores the prevalence and importance of diverse 3'end formation mechanisms.  相似文献   
73.
An oxygenated derivative of dihydrokalafungin (DHK) was isolated from a deletion mutant of the actVA-ORF4 gene involved in the biosynthesis of a dimeric benzoisochromanequinone (BIQ) antibiotic, actinorhodin (ACT), in Streptomyces coelicolor A3(2). Spectroscopic analysis elucidated its structure as 8-hydroxy-DHK, corresponding to the monomeric unit of ACT. Further metabolite analysis identified its related compound, clearly derived from the reduction of 8-hydroxy-DHK. The structures of these metabolites indicate the essential role of ActVA-ORF4 in ACT biosynthesis, specifically in dimerization of a BIQ intermediate via C-C bond formation.  相似文献   
74.
Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively parallel sequencing and compared with the chloroplast genome sequence of domesticated O. sativa. Oryza australiensis differed in more than 850 sites single nucleotide polymorphism or indel from each of the other samples. The other wild rice species had only around 100 differences relative to cultivated rice. The chloroplast genomes of Australian O. rufipogon and O. meridionalis were closely related with only 32 differences. The Asian O. rufipogon chloroplast genome (with only 68 differences) was closer to O. sativa than the Australian taxa (both with more than 100 differences). The chloroplast sequences emphasize the genetic distinctness of the Australian populations and their potential as a source of novel rice germplasm. The Australian O. rufipogon may be a perennial form of O. meridionalis.  相似文献   
75.
Context and objective: Plasma arachidonate (20:4) levels in patients with chronic obstructive pulmonary disease (COPD) were investigated. Methods: Plasma was extracted and free fatty acids (FFAs) were separated using column chromatography and measured by fluorescence. Plasma 20:4 levels and its percentage relative to total FFA levels (%20:4) were measured in COPD (n = 18) and control (n = 20) subjects. Results and conclusions: FFA levels were lower in COPD compared with normals. However, there was a significant increase in %20:4 levels in COPD patients (GOLD stage I/II 0.9 ± 0.4%; GOLD stage III/IV 1.1 ± 0.1%) compared with control subjects (0.6 ± 0.1, p < 0.05). %20:4 is a potential biomarker for COPD.  相似文献   
76.
77.
The major vault protein (MVP) is the major constituent of the vault particle, the largest ribonuclear protein complex described to date and is identical to lung resistance-related protein (LRP). Although MVP is also expressed in several normal tissues, little is known about its physiological role. MVP played a protective role against some xenobiotics and other stresses. We thus investigated the effect of osmotic stress on MVP expression by treating human colon cancer SW620 cells with sucrose or NaCl. The expression level of both MVP protein and MVP mRNA was increased by the osmostress. Sucrose or sodium chloride could also enhance MVP promoter activity. Inhibition of p38 MAPK in SW620 cells by SB203580 inhibited the expression of MVP under hyperosmotic stress. These findings suggested that osmotic stress up-regulated the MVP expression through p38 MAPK pathway. Down-regulation of MVP expression by MVP interfering RNA (RNAi) in SW620 cells increased the sensitivity of the cells to hyperosmotic stress and enhanced apoptosis. Furthermore, MVP RNAi prevented the osmotic stress-induced, time-dependent increase in phosphorylated Akt. These findings suggest that the PI3K/Akt pathway might be implicated in the cytoprotective effect of MVP.Our data demonstrate that exposure of cells to hyperosmotic stress induces MVP that might play an important role in the protection of the cells from the adverse effects of osmotic stress.  相似文献   
78.
Bone resorption in the joints is the characteristic finding in patients with rheumatoid arthritis (RA). Osteoclast-like cells are present in the synovial tissues and invade the bone of patients with RA. The characteristics of these cells are not completely known. In the work reported here, we generated these cells from peripheral-blood monocytes from healthy individuals. The monocytes were co-cultured with nurse-like cells from synovial tissues of patients with RA (RA-NLCs). Within 5 weeks of culture, the monocytes were activated and differentiated into mononuclear cells positive for CD14 and tartrate-resistant acid phosphatase (TRAP). These mononuclear cells then differentiated into multinucleated giant bone-resorbing cells after stimulation with IL-3, IL-5, IL-7, and/or granulocyte-macrophage-colony-stimulating factor. TRAP-positive cells with similar characteristics were found in synovial fluid from patients with RA. These results indicate that multinucleated giant bone-resorbing cells are generated from monocytes in two steps: first, RA-NLCs induce monocytes to differentiate into TRAP-positive mononuclear cells, which are then induced by cytokines to differentiate into multinucleated giant bone-resorbing cells.  相似文献   
79.
Inoue  Ryuji 《Neurophysiology》2003,35(3-4):175-180
The molecular mechanisms underlying Ca2+ entry evoked by cell surface receptors in smooth muscle have long been enigmatic, but an important breakthrough has been made by recent investigations on mammalian homologues of Drosophila transient receptor potential (TRP) protein. There is now growing evidence that TRPC6 plays an integrative role in vascular tone regulation, Ca2+ entry channels activated by the sympathetic nerve stimulation, vasoactive peptides, and mechanosensitive mechanisms. Other TRPC isoforms, such as TRPC1 and TRPC4 (and perhaps TRPC5), are also expressed abundantly in smooth muscle and may contribute to muscle contraction, cell proliferation, and cholinergic control of the gut motility. This paper briefly overviews the current knowledge about these TRP proteins in smooth muscle physiology.  相似文献   
80.
Fhod3 is a cardiac member of the formin family proteins that play pivotal roles in actin filament assembly in various cellular contexts. The targeted deletion of mouse Fhod3 gene leads to defects in cardiogenesis, particularly during myofibrillogenesis, followed by lethality at embryonic day (E) 11.5. However, it remains largely unknown how Fhod3 functions during myofibrillogenesis. In this study, to assess the mechanism whereby Fhod3 regulates myofibrillogenesis during embryonic cardiogenesis, we generated transgenic mice expressing Fhod3 selectively in embryonic cardiomyocytes under the control of the β-myosin heavy chain (MHC) promoter. Mice expressing wild-type Fhod3 in embryonic cardiomyocytes survive to adulthood and are fertile, whereas those expressing Fhod3 (I1127A) defective in binding to actin die by E11.5 with cardiac defects. This cardiac phenotype of the Fhod3 mutant embryos is almost identical to that observed in Fhod3 null embryos, suggesting that the actin-binding activity of Fhod3 is crucial for embryonic cardiogenesis. On the other hand, the β-MHC promoter-driven expression of wild-type Fhod3 sufficiently rescues cardiac defects of Fhod3-null embryos, indicating that the Fhod3 protein expressed in a transgenic manner can function properly to achieve myofibril maturation in embryonic cardiomyocytes. Using the transgenic mice, we further examined detailed localization of Fhod3 during myofibrillogenesis in situ and found that Fhod3 localizes to the specific central region of nascent sarcomeres prior to massive rearrangement of actin filaments and remains there throughout myofibrillogenesis. Taken together, the present findings suggest that, during embryonic cardiogenesis, Fhod3 functions as the essential reorganizer of actin filaments at the central region of maturating sarcomeres via the actin-binding activity of the FH2 domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号